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Abstract — Position sensorless torque ripple minimization
techniques are presented to deal with the issues of rotor pesition
sensor requirement and high torque ripple production in a
switched reluctance motor (SRM) drive. In the proposed
methods, multilayer perceptron (MLP) neural networks have
been applied to learn the non-linear electrical characteristics of
an SRM. The non-linear model of an SRM is used in the
simulation which takes into account the magnetisation
saturation effect. The model is verified with experimental flux
linkage, inductance and torque data taken from a 7.5kW SRM.
Simulation results have shown that torque ripple minimization
can be achieved without a rotor position sensor or torque
sensor. Experimental work has been undertaken to show the
effectiveness of the torque prediction by the neural network.

INTRODUCTION

The Switched Reluctance Motor has received much
attention for development of various general-purpose
adjustable speed drives in industrial and consumer product
applications. The SRM is simple in construction and can
operate at high speeds. The simple power electronic converter
requirement and fault tolerance capability are among other
specific advantages of SRM drives. Alongside the
advantages, SRM exhibits two main disadvantages of
requiring a rotor position sensor for its operation and
producing high torque ripple. The position sensor is a
significant contribution to the cost and complexity, and tends
to reduce the reliability of the drive system. The origin of the
torque ripple in an SRM is the highly non-linear and discrete
nature of the torque production mechanism. The torque ripple
is significant at the commutation instant.

The literature reports both sensorless {1}, {2], [3], [4]. [5],
[6]. [7] and torque ripple minimization [8], [9]. [10], [11].
[121, [13], [14] methods for SRM but the challenge is to
achieve these together. The aim of this work is to provide a
unified solution. The work presented here begins with a
description of the 12/8 SRM model used and the verification
of this model with experimental measurement. This will be
followed by two proposed sensorless torque ripple
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minimization methods namely a Single Neural Network
(SNN) scheme and a Dual Neural Network (DNN) scheme.
The simulation carried out in Matlab and the results will be
presented to show the success of the proposed methods.
Experimental work has been undertaken to show the
effectiveness of the torque prediction by the neural network.

SIMULATION MODEL AND EXPERIMENTAL MEASUREMENTS

The model of the SRM used in the simulation was based
on a trigonometric function for the variation of the
unsaturated inductance with the rotor position and a
hyperbolic function for saturation approximation [15].
Because SRM are designed to work in saturation, linear
models are unacceptable and although the saturation model
here is an approximation, its results are realistic enough for a
system level simulation. Figure 1 shows the graphs of flux
linkage, inductance and electromagnetic torque plotted
against rotor position for both the simulation model (left) and
static measurements (right). The experimental flux linkage
data was calculated based on the measured phase voltage and
current with the rotor locked at various positions over the
rotor pole pitch. The phase inductance was determined from
the rate of change of the calculated flux linkage. Two sets of
experimental torque data were produced. The first set was
calculated based on the co-energy produced by the flux
linkage and the second set was measured by a load cell.
Figure la shows that the simulation model has produced a
sufficiently accurate flux linkage characteristic. The phase
inductance in Figure 1b produced by the simulation model
shown a lower saturation level at high current compared to
the experimental data. The torque produced by the simulation
model shows a larger deviation than that of the flux linkage
and phase inductance simulation data. Despite the differences
produced by the simulation model, it has produced a
characteristic that resemble the characteristic of an SRM and
can be used to assess the sensorless control methods.
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Fig. la. Graph of Flux Linkage against Rotor Position (simulation model and experimental measurement)

S 20 25
Noter Postisiideg)

[
Woat

pod
gy

Fig 1b. Graph of Inductance against Rotor Position (simulation model and experimental measurement)

Fig l¢. Graph of Electromagnetic Torque against Rotor Position
(simulation model, experimental measurement and calculation from co-energy term)

PROPOSED SENSORLESS
TORQUE RIPPLE MINIMISATION METHODS

Two methods are proposed here for sensorless torque
ripple minimization. In both, an artificial neural network has
been wused to learn the pon-linear electromagnetic
characteristic of an SRM. Neural networks are suitable for
these applications because of their ability to leam a non-
linear input-output function of a system by observing a set of
input-output examples (training set) of that system.

A. SNN Scheme
In the SNN scheme, the control model comprises a neural
network representing the electrical characteristic and a lincar

observer used as an estimator for the mechanical system. As
will be shown in this section, the speed and position state
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errors need for the estimator can be obtained from the flux
linkage prediction neural network.

A 2-layer MLP neural network is chosen and trained in
off-line mode to predict the flux linkage y of a phase of an
SRM with the phase current ¢ and rotor position 6 as its
inputs. The parameters of the trained flux linkage prediction
neural network i.e. the weights and biases, are used to obtain
information on the incremental inductance dy/di, the partial
derivative of flux linkage with respect to rotor position
/00, the partial derivative of incremental inductance with
respect to rotor position 0(dy/di)/d@ and the electromagnetic
torque . O’Donavan et al. [16] proposed using the weights
and biases of the flux linkage prediction neural network to
obtain the electromagnetic torque. The work presented here
carries this idea further to obtain three other variables, i.e.
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QY/di, Y90 and d(Jy/di)/d6 which can be used with a linear
observer to determine the rotor position,

The weights and biases of the flux linkage prediction
neural network are manipulated to obtain Jdy/di, dy/d6 and
H(OyI9i)/08 as follows

Wao = SW tanhW i+ W ,6+B,) +B, ()
=1 ) ’
oy, /0i = iW,W,, sec 112(W,}.i+ W0+ B[) (2)
J=t :
W\ /30 =SWW ,sech’W,i+W ,0+B) 3)
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i
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where N is the number of neurons in the hidden layer
W; are the weights at the output layer
W;; are the weights at the input layer connecting the
input current { to the hidden neurons
W, are the weights at the input layer connecting the
input rotor position 6 to the hidden neurons
B; are the biases for the hidden neurons
B, is the bias for the output neuron

The structure of the linear observer is shown in Figure 2
and described by the state-space equation (6). The input to
the observer is the total electromagnetic torque produced by
the SRM T, as calculated from the neural network. The

AR A
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where T, is the total torque produced by SRM
J is the inertia of the rotor
B is the viscous damping
@ is the estimated speed of rotation

0 is the estimated rotor position
e, 1s the speed error
eg is the rotor position etror

Computation of speed error:

The difference between the EMF term calculated from the
observed voltage and current and that from the flux linkage
prediction neural network yields an indication of the speed
error as shown in (7) - (9). Equations (7) - (9) show that for a
well trained flux linkage prediction neural network, speed
error can be calculated by taking the difference between the
derivative of the flux linkage of the phase winding and the
derivative of the flux linkage from the flux linkage prediction
neural network.

states of the observer are the estimated speed of rotation @ E=(—iR)
and rotor position 8. The observer produces rotor position at dy(i.0)
its output based on the states crrors ¢, , es computed using == N
the terms in (2) — (4) and the phase currents and voltages. The d ( 9)
computation of the observer states errors are described as E,. =Y b)
follows o dt
€= E-E NN
_dy(i8) dy,.(.6)
Tiow -——J & dt dt
Li Qbserv j ;
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Fig 2. Structure of linear observer (mechanical system) i di dt 26 a6
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Computation of rotor position error:

The rotor position error is calculated based on the slope of the
incremental inductance curve. The error between the actual
and estimated rotor position allows the gradient of the curve
to be determined when the inductance at both positions are
known.

incremental
inductance

Rotos
Pasition

8, 0
Fig 3. Computation of Position Error
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The same flux linkage prediction neural network is used to
calculate the torque developed by each phase of the SRM.
This is used in a hysteresis controller to provide minimum
torque ripple operation within the hysteresis band. The torque
ripple minimization is based on a pre-defined torque
waveform. The implementation of SNN scheme is shown in
Figure 4.

B. DNN Scheme

In the DNN scheme, one MLP neural network is used for
predicting the rotor position 8 and a second is used to provide
a current reference to meet the desired torque. The first neural
network is chosen and trained in off-line mode to predict the
rotor position 8. The inductance, L of each the stator phase is
a function of the phase current i and of the rotor position 6. In
order to determinc the rotor position 8, the neural network is
trained to learn the inverse of the function, i.e. to learn the
mapping of 6=f(L,i). Since the rotor position @ is dependent
on the value of the current and inductance of each phase,

oy oy A
3 (3 _a‘,"" 5— these parameters, i.e. i, iy, iz and L;, L,, L; have been chosen
__(_(_Vi =% ! (102) as the inputs of the neural networks. The reference phase
90\ 9 ) 6-6,, current produced by the second neural network is based on a
pre-defined torque waveform. The current is regulated by a
PI current controller. The implementation of DNN scheme is
shown in Figure 5.
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Fig 4. Single Neural Network (DNN) Scheme
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SIMULATION RESULTS rotor position prediction neural network to predict the rotor

The simulation results of the proposed methods are shown in
Figure 6 for a speed of rotation of 100 rad/s and a torque
demand of 10Nm. The simulation was also carried out for a
trapezoidal phase current as shown on the lower plot of
Figure 6a. From these figures, it can be seen that the DNN
scheme reduces the peak to peak torque ripple from 30% to
approximately 6% as compared to trapezoidal current. The
SNN scheme reduced the torque ripple to only 20%. In both
of the methods, rotor position sensor is not required for the
operation of SRM drive. The DNN scheme uses a separate

Peak to Peak Torque Ripple{with torque reference of 10Nm) at 100 rad/s
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Fig 6a. SRM Drive with DNN Scheme
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position. The error in the rotor position prediction is confined
to whether the neural network was trained sufficiently and its
resultant generalisation characteristic. In the SNN scheme,
the rotor position is estimated by a linear observer with its
speed and position states error computed from the flux
linkage neural network. The accuracy of the states error will
affect the accuracy of the estimated rotor position. Further
errors may result if the observer is not based on an accurate
mechanical model.

Peak to Peak Torqus Rippie(vith torque refererce of 10Nm; at 100 radis
2 — —
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Fig 6b. SRM Drive with SNN Scheme
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EXPERIMENTAL RESULTS

The simulation model has been experimentally verified by
static measurement of an SRM. The experimental set-up for
the SRM drive includes a fixed point DSP controller, IGBT
power converter switching at 20kHz and a 12/8 SRM rated at
7.5kW (48Nm @ 1500rpm) which is configured to run in a
closed loop servo control system. Q-format numbers are used
to represent the binary point values of the weights and biases
of the neural network. The hyperbolic tangent function is
implemented using a look-up table. Experimental data was
collected with a TDS380 scope and plotted in Matlab. Figure
7 shows the results of the torque prediction achieved with a 9
hidden neuron neural network. A simple current pulse
demand and Pl current control loop sampled at 2kHz was
used for this test. The results show that the neural network is
able to predict the torque with a sampling rate of 2kHz using
the fixed-point DSP. A rotor position of zero corresponds to
the unaligned position and the aligned position is at 22.5°.
The 9 neuron hidden network has not learnt the characteristic
well near the unaligned position. A greater number of
neurons can improve this but at the expense of execution
time.

CONCLUSIONS

The proposed methods have been shown to achieve torque
ripple minimization in SRM drive without a rotor position
sensor. Two methods have been proposed and tested in
simulation. In simulation, the DNN scheme has shown a
better performance in reducing the torque ripple compared to
the SNN scheme. The peak to peak torque ripple has been
reduced from approximately 30% (trapezoidal current) to
20% (SNN scheme) and to 6% (DNN scheme). The SRM
model used in the simulation has been verified with
experimental data taken from a 7.5kW SRM. The neural
network torque prediction for the proposed method has been
implemented using a fixed-point DSP and has shown
satisfactorily results in predicting the torque at different
current level over the rotor pole-pitch .
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Fig 7a. Torque Prediction (7A peak)
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